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Random fluctuations in genetic networks are inevitable as chemical reactions are probabilistic and many genes, RNAs and
proteins are present in low numbers per cell. Such ‘noise’ affects all life processes and has recently been measured using green
fluorescent protein (GFP). Two studies show that negative feedback suppresses noise, and three others identify the sources of
noise in gene expression. Here I critically analyse these studies and present a simple equation that unifies and extends both the
mathematical and biological perspectives.

I
ntracellular randomness has long been predicted from basic
physical principles1 and observations of phenotypic hetero-
geneity2,3. In the last few years it has also been visualized
directly using fluorescent probes. The first quantitative
studies4–8 collectively examined the noise associated with the

principal steps of the central dogma of molecular biology; that is,
replication, gene activation, transcription, translation and the
enslaving intracellular environment. They also suggested how
autorepression of replication and transcription suppresses noise,
and how eukaryotes differ from prokaryotes. This analysis connects
the different studies to a simple variant of the fluctuation-dissipa-
tion theorem and uses the experimental controls to extend or
reinterpret many of the conclusions.

Theory
The fluctuation-dissipation theorem

All cell components display intrinsic noise due to random births
and deaths of individual molecules, and extrinsic noise due to
fluctuations in reaction rates. This has been modelled extensively
using both detailed computer simulations and analytically tract-
able Markov processes, each tailored to a particular system. Here,
I take a different approach and see how far a first approximation
of a simple but generic model goes in explaining previous theory
and experiments. The probabilities of having n1 and n 2 mol-
ecules per cell of chemical species X1 and X2 (for instance
messenger RNAs and proteins, but interpretations vary with appli-
cation) are described by a birth-and-death Markov process with
events

n1

R^
1 ðn1Þ

�������!n1 ^ 1 and n2

R^
2 ðn1;n2Þ

�������!n2 ^ 1

Because n 1 affects rate R2 but n 2 does not affect R1, this is an
example of dynamic disorder9,10 where species X1 provides the
randomly fluctuating environment for X2, as mRNA fluctuations
randomize protein synthesis. To collectively approximate all such
processes I use the Q-expansion11,12 where the first- and second-
order terms reproduce the macroscopic rate equations and the
fluctuation-dissipation theorem13,14 respectively. The latter is
then interpreted in terms of the logarithmic gains Hij ¼
›lnðR2

i =Rþ
i Þ=›lnðnjÞ that measure how the balance between pro-

duction and elimination of Xi is affected by Xj. These scale-free
parameters are closely related to the elasticities of metabolic control
analysis15,16 and the apparent kinetic orders of biochemical systems
theory17,18, and can often be estimated directly from the reaction
rates. For instance, if Rþ

i and R2
i are of first and second kinetic order

in n j respectively, then H ij ¼ 2 2 1 ¼ 1. For the process described
above, using j i for standard deviations, kn il for averages and t i for
average lifetimes, stationary fluctuations around a stable fixed point

follow

where j2
1=kn1l

2 < ðkn1lH11Þ
21: Intrinsic noise depends on the

average number of molecules and how systematic adjustments
(rate H 22/t2) quench spontaneous fluctuations (rate 1/t2). The
normalized adjustment rate H 22 can also be interpreted as the
statistical bias to return to the average rather than deviate further: a
1% increase in n2 gives a H 22 per cent increase in R2

2 =Rþ
2 : Extrinsic

noise instead depends on the magnitude of n1 fluctuations and how
strongly n 1 affects n 2. The normalized susceptibility factor H 21/H 22

reflects that a 1% increase in n1 gives a H 21 per cent increase in
R2

2 =Rþ
2 ; which makes n2 adjust towards a H 21/H22 per cent lower

average quasi-steady-state. When n1 changes rapidly (high H 11/t1)
or n2 adjusts slowly (low H 22/t2), n 2 does not have time to reach its
quasi-steady-state before n 1 changes anew. Consecutive ups and
downs in n 1 then cancel out and n 2 time-averages over the recent
history of n1 fluctuations. The effect of cell growth and division is
qualitatively accounted for by adding first-order elimination terms
to R2

1 or R2
2 . The method behind equation (1) can be extended to

any chemical system, providing a basis for a stochastic Biochemical
Systems Theory (J.P., manuscript in preparation).

Noise in the central dogma

The basic principles of noise in genetic networks can be understood
by applying equation (1) to the central dogma of molecular biology.
Unregulated replication combined with first-order elimination is
dynamically unstable as DNA acts as a template for its own synthesis:
if each molecule on average replicates more or less than once per cell
cycle, the average concentration increases until resources become
limiting or decreases until all templates are gone. At intermediate
replication frequencies, where synthesis and elimination are delicately
balanced, random fluctuations still accumulate in an almost unrest-
rained fashion. With X2 as self-replicators, this has been modelled19

similarly to equation (1) with H22 ,, 1, and the same principles
apply to dynamic instability of microtubules20 and many other cell
processes12,19,21. Unregulated transcription and translation are not
unstable when combined with first-order elimination, as mRNAs and
proteins are not templates for their own synthesis. Over the last 35
years, models of stochastic gene expression19,22–31 have instead focused
on dynamically disordered linear processes, corresponding to
H11 ¼ H22 ¼ 2H21 ¼ 1 in equation (1) with X2 as proteins and
X1 as genes27,28, mRNAs22–26 or the intracellular environment19. To
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suppress the noise in any of these systems, cells commonly use
autorepression that increases and decreases synthesis at low and
high concentrations respectively. This has been studied extensively
using macroscopic models17,32, and the stochastic principles are
closely related. Autorepression can raise the effective H 22, and thus:
(1) increase the adjustment rate H 22/t2 relative to the rate 1/t2 of
spontaneous randomization and thereby suppress intrinsic noise
around a given average number of molecules; (2) increase the
adjustment rate H 22/t2 relative to the rate H 11/t1 of environmental
changes and thereby amplify extrinsic noise by preventing time-
averaging; (3) decrease the susceptibility H 21/H 22 of the quasi-
steady-state, which typically overcompensates for the impaired
time-averaging and produces a net decrease in extrinsic noise.
This may explain the popularity of autorepression in transcription
networks32–34 and its ubiquity in replication control of chromosomes
and plasmids where it has been similarly described5,19. Equation (1)
thus unifies models of autoreplication, constitutive transcription
and translation, and the stabilizing effect of autorepression, all in
disordered environments. This makes it ideally suited also to unify
the GFP studies that examine these aspects experimentally.

Terminology and measures

Comparing different systems requires consistency in definitions and
measures. The terms ‘intrinsic’ and ‘extrinsic’ generically dis-
tinguish between the origin and propagation of noise, and their
biological meaning is always defined in conjunction with a specified
component or process. For example, if a gene for a transcriptional
repressor spontaneously switches on and off, thereby enslaving the
encoded protein and transmitting the fluctuations to repressed
genes, the noise is intrinsic to the number of active repressor
genes and extrinsic to all affected components. If the corresponding
noise in a repressed protein was instead assigned to its transcription,
just because transcription transmits the noise from the repressor
gene, then by the same logic it must also be assigned to translation
or to any other step in the cascade. This relates directly to the
mathematical measures. For intrinsic noise it is convenient to use
j2

2=kn2l for a size-independent comparison, but this artificially
forces extrinsic noise to increase with kn2l, as in j2

2=kn2l < H21
22 þ

Ekn2lwhere E is the second term in equation (1). Unless the measure
matches the noise, scale artefacts may thus completely distort
interpretations of dynamics. For instance, if all protein (X2) noise
came from fluctuations in protease levels, j2

2=kn2l
2 would typically

be independent of transcription and translation rates. But because
both of these processes affect kn 2l, measuring noise strength by
j2

2=kn2l would make it appear as if they contributed noise, even
though they have nothing to do with either its production or
transmission. Fortunately, these scaling principles also provide an
opportunity to trace the noise: increasing the number of repressor
genes in the example above should reduce the relative standard
deviations of the repressed proteins, whereas other changes in
transcription or translation should have little effect. This approach
must be used carefully as the susceptibilities or time constants may
change as well, but it at least provides useful indications.

Autorepression
Two groups have used plasmid-expressed gfp to examine, for the
first times, how autorepression of replication4 and transcription5

affects noise levels. The replication study used GFP as a reporter for
gene dosage, and compared natural and synthetic plasmids that
have intact and impaired autorepression respectively. The transcrip-
tion study instead used plasmids as cloning vectors to study protein
fluctuations, and engineered an autorepression loop by placing a
fusion of GFP and the tetracycline repressor (TetR) downstream of a
TetR-repressed promoter. Both studies showed that autorepression
substantially reduces relative standard deviations, which has been
suggested to come from the more rapid adjustments to steady state
in plasmid19 and protein5 concentrations respectively. But even if

rapid adjustments reduce intrinsic noise around a given average, the
effect is the opposite for extrinsic noise (compare points (1) and (2)
above). This reveals an interesting discrepancy between the studies:
if the noise came from gene expression, GFP would not measure
plasmid copy numbers, and if it came from fluctuations in plasmid
copy numbers, a protein that adjusted more rapidly to its mean-
dering steady state would inherit more noise, not less. Thanks to the
many experimental controls, this issue can be at least partially
settled using equation (1).

Replication

With X2 as plasmids, the simplest models of plasmid copy number
control35 assume Rþ

2 / n2ðK þ nh
2Þ

21: Factor n2 reflects that each
copy can self-replicate, and factor ðK þ nh

2Þ
21 reflects autorepres-

sion, for instance approximating the effect of short-lived plasmid-
encoded inhibitors19 that act cooperatively with effective Hill
coefficient h. The statistics of plasmid segregation in growing cells
depends on the accuracy of partitioning plasmids at cell division,
but the qualitative effect is similar to first-order elimination19, R2

2 /
n2: When K þ nh

2 is insensitive to n 2, so that autoreplication is
poorly constrained by autorepression, both R2

2 and Rþ
2 are thus

approximately proportional to n 2 and plasmids are almost unstable,
H 22 ,, 1. This explains the large copy number variation observed
for plasmids with impaired replication control4.

The random environment X1 could represent DNA polymerase,
ribosomes, chaperones or any other factor that affects the replica-
tion control system. But because equation (1) is generic, the
qualitative effects of these hypothetical fluctuations can be under-
stood even if the kinetic details are left unspecified. As in points (1)
to (3) in the ‘Noise in the central dogma’ section, autorepression
should suppress intrinsic plasmid noise by expediting normalized
plasmid adjustments, and suppress extrinsic plasmid noise by
decreasing the net influence of environmental variation. The six
natural plasmids studied4 displayed similar j2/kn2l despite large
differences in kn2l—typically the signature of extrinsic noise. How-
ever, low- and high-copy plasmids are different altogether, and the
former are thought to compensate by more efficient partitioning
and replication control. Some of the similarities also reflect that
GFP is an inexact reporter of single-cell plasmid copy numbers
(Supplementary Information). This makes it impossible to say how
the noise is checked by autorepression, but because plasmids are
present in low numbers per cell, most studies19 have focused on
intrinsic noise and normalized adjustment rates.

Transcription

With X2 instead representing proteins, constitutive transcription
(Rþ

2 independent of n2) combined with first-order elimination
(R2

2 / n2) is far from unstable (H 22 ¼ 1). Because GFP was also
present in high numbers per cell (kn 2l .. 1), intrinsic protein noise
should thus be negligible, as confirmed by experimental controls5

where j2/kn2l was unaffected by large changes in kn2l. Similarly,
experiments5 where j2/kn 2l was unaffected by 20-fold changes in
total gene activity and mRNA levels suggest that spontaneous small-
number fluctuations in these components do not contribute any
substantial protein noise, although they may still transmit fluctu-
ations from plasmids, ribosomes or RNAses. The transcriptional
autorepression loop was described5 by Rþ

2 /KðK þ n2Þ
21 < Kn21

2 ;
which would stabilize the system twofold (H22 < 2). The protein
now affects the number of active genes and mRNAs, but because
these components were not the source of the extrinsic noise,
equation (1) still applies (R1 is unaffected by n2) and predicts
points (2) to (3) in the ‘Noise in the central dogma’ section with the
environment X1 left unspecified. Rapid protein adjustments thus
increase noise by preventing time-averaging, and the observed
decrease instead probably comes from an overcompensating
reduction in the susceptibility of the steady state to changes in
some extrinsic factor. For instance, cells that by chance have more

analysis

NATURE | VOL 427 | 29 JANUARY 2004 | www.nature.com/nature416 ©  2004 Nature  Publishing Group



plasmid copies accumulate more protein, but transcriptional auto-
repression then partially compensates by reducing the expression per
gene copy. Experimental controls5 measuring the average protein
level kn2l as a function of the average plasmid level kn1l suggest an
expected kn2l / kn1l and kn2l /

p
kn1l for the unregulated and

autoregulated system respectively, corresponding to H2
21=H2

22 ¼ 1
and H2

21=H2
22 < 1=4 in equation (1). This does not prove that all

protein noise comes from fluctuations in plasmid copy numbers—
the results are also consistent with a decreased susceptibility to
ribosomes or proteases—but plasmids are likely contributors
because of their low copy numbers and because their fluctuations
are slow and difficult to time-average. Many natural plasmids in fact
use transcriptional autorepression36 to ensure that their replication
proteins are unsusceptible to perturbations in both plasmid copy
numbers and the intracellular environment. The transcription
study5 is the first direct assessment of this principle.

Chromosomal gene expression
Plasmid-expressed gfp does not reflect the randomness of chromo-
somal gene expression because transcription and translation are
averaged over more gene copies and plasmids themselves fluctuate
randomly. The first group6 to identify the sources of noise in gene
expression therefore cloned gfp into the chromosome of Bacillus
subtilis and measured single-cell fluorescence at varying rates of
transcription and translation. The result of that study is consistent
with a long-standing hypothesis19,22–26 that protein fluctuations
depend on the burst b of proteins (henceforth denoted X2) made
per mRNA transcript, j2

2=kn2l < 1þ kbl: A second group7 instead
inserted two types of gfp into the Escherichia coli chromosome and
used correlations between them to infer where the fluctuations came
from. Finally, a third group revisited the one-gene strategy for
Saccharomyces cerevisiae and again reported j2

2=kn2l as a function of
transcription and translation rates. They suggested that eukaryotes
differ from prokaryotes because promoter fluctuations and transcrip-
tional reinitiation produce a non-monotonous transcription noise.

Transcription and translation noise in B. subtilis

With X1 and X2 as mRNAs and proteins, and k 1 and k 2 as the
transcription and translation rates, the model behind the B. subtilis
experiments6,26 assumes Rþ

1 ¼ k1; R2
1 ¼ n1=t1; Rþ

2 ¼ k2n1 and R2
2 ¼

n2=t2; so that H 11 ¼ H 22 ¼ 2H 21 ¼ 1 in equation (1). Further
assuming t 1 ,, t 2 gives j2

2=kn2l
2 < kn2l

21
þ kn1l

21
t1=t2; and

multiplying by kn 2l ¼ kn 1lk 2t2 reproduces the burst prediction
j2

2=kn2l < 1þ k2t1 ¼ 1þ kbl: The experiments confirmed that
j2

2=kn2l is independent of k1 and increases linearly with k 2, which
is quite remarkable as there are no free parameters and they tested a
real prediction rather than making ad hoc explanations. This
suggested that noise is determined translationally and that strongly
translated genes are implicated in particularly noisy processes6.
However, the burst term kbl in j2

2=kn2l does not come from the
randomness of translation, but from random births and deaths of
mRNA transcripts. It would disappear completely if transcription
and mRNA degradation were deterministic, and would remain
unchanged if translation was deterministic. By construction,
j2

2=kn2l is thus independent of the contribution from random
translation events, and using the scale-free j2

2=kn2l
2 provides a

quite different perspective19,31: a higher translation rate has a marginal
effect because it only reduces the intrinsic protein noise kn2l21, which
should be small throughout the experiments, whereas a higher
transcription rate additionally reduces the much greater noise con-
tribution from having few mRNA transcripts, j2

1=kn1l
2
¼ kn1l

21.
The effect of other random influences was not estimated, and

noise was measured at varying rates—tracking changes rather than
absolute values—to draw conclusions independently of such effects6.
But extrinsic processes would typically make superimposable con-
tributions to j2

2=kn2l
2 rather than to j2

2=kn2l; and using j2
2=kn2l can

then be misleading (see ‘Terminology and measures’ section). In

particular, if any substantial noise changed as transcription and
translation were varied, total noise should behave in a more
complicated manner and the experiments would be hard to inter-
pret at all. If it instead remained constant, it could be calculated
from the data. The acid test is how j2

2=kn2l
2 appears to vary with

kn 2l21 in the transcription experiments. The mRNA–protein model
above predicts a perfect proportionality, a constant extrinsic noise
adds a displacement, and a varying extrinsic noise creates a distor-
tion. Replotted this way, the data fit well to a straight line with a
small displacement, which suggests that most noise indeed comes
from having few transcripts per cell, at least at low rates of
transcription. This strengthens the authors’ model6,26, although
from a different biological perspective, and shows that their data
additionally account for other possible sources of noise. Noise in
promoter activity or fluctuations in the transcriptional repressor
should also have less effect at higher transcriptional induction, and
could in principle produce the same result; however, there is then no
reason to expect a quantitative fit without fine-tuned parameters
(Supplementary Information).

Intrinsic and extrinsic noise in E. coli

The kinetic analysis31 accompanying the two-gene E. coli experi-
ments uses separate models for the noise that is intrinsic and
extrinsic to the expression of an individual gene. The intrinsic
part is similar to the mRNA–protein model above, and the extrinsic
part is equivalent to the second term in equation (1) with arbitrary
j2

2=kn2l
2 and H 21, but H 11/t1 ¼ 0. The difference reflects that

equation (1) is derived from stationary stochastic processes rather
than fixed probability distributions, thereby extending the analysis
from static (H 11/t1 ¼ 0) to dynamic (H 11/t1 . 0) disorder. This is
biologically relevant as GFP degrades so slowly that few cell
processes are static in comparison.

Experimentally, Elowitz et al.7 measured the concurrent
expression of two identically regulated but fluorescently dis-
tinguishable gfp genes in the E. coli chromosome. Spontaneous
small-number mRNA fluctuations then generate uncorrelated fluc-
tuations in the two GFPs as each allele makes its own transcript,
whereas noise in RNA polymerase levels perturbs both GFPs in the
same way. To quantify these data without relying on any particular
kinetic model, Swain et al.31 described generic protein fluctuations
in terms of distributions of underlying (static) variables that were
either intrinsic (for instance mRNA) or extrinsic (for instance RNA
polymerase) to the expression of an individual gene. This use of
‘intrinsic’ and ‘extrinsic’ makes a non-trivial distinction between
system and environment, but is qualitatively supported by equation
(1) where the second term can be interpreted as the normalized
covariance j23/(kn 2lkn 3l) between two identical and independent
components X2 and X3 embedded in the same environment X1

(Supplementary Information). Nonlinear mechanisms would vio-
late the requirement that the GFPs are independent (Supplementary
Information), but that was not a problem in the experiments, and
this clever strategy then directly separated the noise that is intrinsic
and extrinsic to the expression of an individual gene. Their intrinsic
contribution behaved almost like the total noise in the one-gene
B. subtilis study and was similarly explained in terms of small-
number mRNA fluctuations. However, their extrinsic contribution
from the intracellular environment was by contrast substantial or
even dominant. This is a central discrepancy. If most noise comes
from the low numbers of mRNAs or proteins, each gene is under
individual selection for high or low noise production, but if it comes
from the intracellular environment, numerous genes are affected
similarly regardless of transcription and translation rates. Discre-
pancies can always be ascribed to differences in experimental
conditions, but in this case the devil seems rather to be in the
genetic details: most noise extrinsic to gene expression in the two-
gene study was traced back7,31 to the transcriptional repressor LacI
that was gradually inactivated by isopropyl-b-D-thiogalactoside to
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vary the transcription rate. The two-gene study used wild-type,
oscillating or plasmid-borne lacI, all of which are expected to be
noisier than the highly expressed chromosomal lacI of the one-gene
study. This more complex behaviour of the noise underscores the
importance of using two GFPs, especially as j2

2=kn2l
2 was a non-

monotonic function of transcription.

Transcription and translation noise in S. cerevisiae

The detailed computer simulations accompanying the S. cerevisiae
study8 account for numerous steps in eukaryotic gene expression,
and the results perfectly match experiments where noise strength, as
measured by j2

2=kn2l; responded non-monotonically to transcrip-
tional induction and increased linearly with translation rate. The
translation response was much stronger at partially induced rather
than maximally induced transcription. This suggested that, in
addition to translation noise, eukaryote-specific chromatin
remodelling and transcriptional reinitiation produce quantile tran-
scription bursts. However, because j2

2=kn2l introduces a scale-
dependence, the experiments should be re-evaluated in terms of
j2

2=kn2l
2: The published transcription data then show a monotoni-

cally decreasing j2
2=kn2l

2; but the authors’ full data set is non-
monotonic and displays an initial increase in j2

2=kn2l
2 at low

induction (W. Blake, personal communication). The translation
experiments basically reiterate this result: the linear increase in
j2

2=kn2l indicates an extrinsic source of noise, and the stronger
translation response was obtained at intermediate transcriptional
induction where j2

2=kn2l
2 was larger. This is still consistent with

slow chromatin remodelling and transcriptional reinitiation, so
their interpretation may be correct, but both monotonic and
non-monotonic responses in either j2

2=kn2l or j2
2=kn2l

2 are also
perfectly consistent with a variety of other noise sources, such as
repressors31 and activators or their random association and dis-
sociation to DNA (Supplementary Information). Other types of
experiments are thus needed to distinguish between the many
alternatives, and at this point there are no reasons to favour one
interpretation over another. So far, no principal differences between
protein fluctuations in pro- and eukaryotes have been demon-
strated. The claim that there is a difference was based on a
comparison with the B. subtilis experiments6 that used the same
methods and interpretations, whereas the E. coli experiments7 used
other methods and interpretations but reported almost identical
results. Instead, a comparison of the studies shows how dependent
protein noise is on rate constants and upstream inputs; that is,
differences in network design have overshadowed organismic
differences. Notably, all of them indicate very little noise from, for
example, RNA polymerase or ribosomes that would affect gene
expression on a global level. In the one-gene experiments, fully
induced genes displayed relative protein variation as low as 15% in
both B. subtilis and S. cerevisiae, and much of this may reflect cell-
size variation and measurement errors (Supplementary Infor-
mation). In the two-gene E. coli lacI2 experiments, the noise
extrinsic to gene expression was so small (5%) that it cannot be
convincingly distinguished from zero.

Outlook
Noise in genetic and metabolic networks can be detrimental to
fitness—randomizing developmental pathways, disrupting cell cycle
control or forcing metabolites away from their optimal levels. It can
also be exploited for non-genetic individuality or even for more
reliable and deterministic control25,37,38. But even if the pervasive
influence of noise has been recognized for decades, it is only recently
that quantitative measurements have become feasible. A few pio-
neering groups have now measured stationary fluctuations over
populations of cells, and the results so far are consistent with a few
basic principles. The next challenge is to monitor stochastic signals
and responses in real time and expose the true cell dynamics buried
in population averages. A
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